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Abstract 
 

Microarray technology is a big step in 
bioinformatics. Hidden information within the large 
amounts of data provides scientists with molecular 
functions or essential biological meanings to study and 
analyze. However, these data often contain a certain 
portion of entities that are missing. Several methods to 
estimate these missing values are developed, but most 
of them are with disadvantages. In this paper, we 
propose a novel approach to deal with these missing 
values based on a practical similarity measurement 
between gene pairs. Our approach takes gene 
expression values and gene ontology (GO) information 
for genes into consideration. We implement our 
approach on a real microarray dataset and compare 
its imputation accuracy with other methods. 
Experimental results show that our approach can 
estimate missing values in microarray data effectively. 
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1. Introduction 
 

Microarray experiments are widely used for 
biological analysis or disease diagnosis in the passing 
decade. It offers an opportunity for biologists to 
monitor thousands of genes or proteins at the same 
time on single microarray chip. Numerous gene 
expression data can be generated simultaneously via 
this high throughput biological technology. Gene 
expression values on each microarray chip represent 
the reaction of each gene after the hybridization effect 
across time [1,2]. Each gene expression value 
represents different reaction degrees resulted from 
experiments. In the quantitative data matrix, each gene 
expression value is in the format of logarithm. This 
kind of data provides a possible means for the 
inference of transcriptional regulatory relationships 
among the genes on the microarray gene chips. 

However, microarray gene expression data often 
contain multiple missing values. For real microarray 
datasets, a certain portion of gene expression values 
that do not exist in the raw data are called missing 
values. These empty values need to be correctly and 
effectively imputed before any further analysis is 
performed. The reason why these missing values occur 
can be due to human operations, experimental 
inaccuracy, or unobvious reaction at that time slot of 
certain genes [3]. Figure 1 is an example of missing 
value problem in microarray data. G33 in Figure 1 
stands for a missing value of gene 3 at the third time 
point. 

 
Figure 1.Missing values in microarray data 

 
To solve this problem, several methods developed 

from different viewpoints are introduced in these years. 
Among all published literatures, existing methods for 
microarray missing value imputation mainly utilize k-
nearest neighbor (KNN) or KNN-like approaches to 
estimate the missing values [4]. It is shown that KNN 
is a widely-used method to estimate an unknown target 
object with known information. When applying KNN 
to impute missing values in microarray time series-data, 
we have to choose a number of k similar genes without 
missing entries at the same time slot (experiment) as 
the target missing value. Besides, we still need to 
estimate how similar the two genes of interest are to 
identify whether the two genes have regulatory 
relations. For this purpose, most of the similarity 
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measurements take the statistical or mathematical 
correlations among genes into consideration. These 
principles may be unsuitable to the microarray time-
series data because of the existence of outliers [5]. 
Outliers influence much on the correlation coefficient 
measurements, especially when there are two or more 
outliers occurring in the time-series data set. Also, 
when identifying similarity of two genes in microarray 
time-series data, comparing local similarity is usually 
more important than comparing all time slot points. 
This is because even genes with known regulations 
may have reaction delay or offsets among time axis in 
microarray experiment results [6].  

Moreover, external information such as gene 
ontology for genes themselves is utilized as a hint to 
improve the imputation accuracy [7-9]. This kind of 
external information can provide extra messages for 
genes to improve the accuracy of imputation. 
Combining this external information requires heuristic 
works as well. Besides KNN or KNN-based imputation 
methods, there are also several other works proposed 
from different aspects. Oba et al. propose an estimation 
method for missing values based on Bayesian principal 
component analysis (BPCA) [10]. BPCA is shown to 
outperform others. However, it is not easy to decide 
the number of principal axes while applying BPCA for 
missing value imputation. Moreover, BPCA is not 
practical in the case when many missing values occur 
in one time slot. 

In this paper, we propose a novel approach to 
impute missing values resulted from many reasons in 
microarray data. We first define a similarity 
measurement for gene pairs based on the combination 
of difference of gene expression values and gene 
ontology semantic closeness. This similarity 
measurement is then applied to work with the KNN 
method as the distance of each gene pair to estimate 
missing values in real microarray datasets. 

The remaining of this paper is organized as follows. 
In Section 2, details of our approach for missing value 
imputation are given by starting from the definition of 
our similarity measurement for gene pairs. Section 3 
described the involved datasets and the estimation of 
imputation accuracy. Experimental results are then 
presented and discussed in Section 4. The concluding 
remarks are drawn in Section 5 along with future work. 
 
2. Missing value imputation based on DTW, 
GO, and KNN 
 

In order to impute missing values effectively, we 
propose a novel and effective approach. Our approach 
takes both gene expression values and external 

biological information for genes into account. It is 
carried out with the following four steps. 

 
Step 1: Calculation of DTW distance for each 

gene pair. 
To find the closeness of gene pairs within their 

expression values, we choose the dynamic time 
warping (DTW) distance measurement [11,12]. DTW 
algorithm is used in our approach as the substitution 
for commonly-used Euclidean distance while 
estimating similarity between gene pairs within their 
expression values. This is because the importance of 
finding whether there exist subsequences with highly 
similar relations is emphasized while analyzing whole 
microarray time series data [13]. If two series with 
time slot points are given as input, the DTW algorithm 
can discover the best possible alignment between them 
by calculating the minimum sum of whole matched 
points on the two time series. DTW is a recursive 
algorithm that starts with matching each point-to-point 
pair from the first element to the last element on the 
two input sequences. With DTW mapping method, 
local similarity can be found as the best mapping path 
within the two sequences to be aligned. Equations of 
DTW algorithm are as follows: 

 
Distance of two time slot points: 
The distance between the elements of the two time 

series is computed as: 
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where Wv, WD, and WH denote the weighted values 
for the paths in the vertical, diagonal, and horizontal 
directions respectively. 

Output: DTW distance for two sequences X and 
Y: 
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where lengths of X and Y are n and m respectively. 
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For the improvement of DTW algorithm, we also 
perform some adjustments on it in order to increase the 
effectiveness and accuracy of our approach for missing 
imputation. Due to space limitation, here we mention 
only the names of the two adjustments that generate 
the best results according to our evaluation: Fast DTW 
and Slope Weighting [14,15]. For more information, 
please refer to the references. 

 
Step 2: Calculation of GO semantic similarity for 

each gene pair. 
Analyzing only gene expression values in 

microarray data is not enough. External information of 
genes which provides biological functions or important 
meanings also needs to be concerned. For this purpose, 
we add gene ontology (GO) information for genes into 
our approach. GO is a biological definition and 
annotation for genes that describes the biological 
meanings of each gene. Most known genes have 
specific annotations in GO structure within three 
independent domains: molecular function (MF), 
biological process (BP), and cellular component (CC). 
Terms within three above domains record and 
represent various molecular or biological meanings for 
each annotated gene from different aspects respectively. 
[16] 

With the application of GO annotations for genes, 
similarity measurement between gene pairs can be 
performed more accurately and effectively. Therefore, 
the quantitative representation of GO terms for each 
gene is required to estimate how similar each gene pair 
is. To our best knowledge, the first literature presenting 
methods that use gene ontology is in [17]. The authors 
utilize the concept of information content to identify 
the importance of each GO term by calculating the 
probability of occurrence of each GO term (called the p 
values) in the whole GO structure. Afterward, we can 
estimate the similarity of each gene pair within GO 
semantic aspect by calculating the mean p values of the 
shared GO terms used to annotate the two genes. 
Operations of the algorithm proposed by the authors 
can be briefly descried as follows: 

 
– First find the sets of GO ids for each pair of 

genes being identified. 
– Create a table recording the tracing path of all 

terms annotated for both genes. 
– Calculate the probability of the occurrence of 

each term in the table. 
– Estimate all the parent-children relations of 

each term in the path-tracing table to determine 
whether the two genes have common ancestors. 

–  For genes that have shared parent nodes in the 
GO tracing path, calculate the mean probability 

of occurrence of all their matched GO term 
combinations. 

– The mean probability of occurrence is taken as 
the distance between gene pairs. 

However, the authors in the work only find the 
minimum p value of shared ancestors of GO terms for 
two genes. This operation is insufficient because in GO 
structure two GO terms that are used to annotate 
different genes may have several relations. 
Theoretically, two genes with GO terms in common 
tend to be more relative than two genes having GO 
terms that only have shared ancestors. As a result, our 
approach gives different weighted values while 
calculating p values for the three term-term relations: 
the same terms, parent-children relation, and ancestor- 
sharing relation. The three relations are marked as 
case1, case2, and case3 in order as shown in Figure 2. 

 

 
Figure 2.The three relations between GO term 
pairs 
 

The star symbol in Figure 2 illustrates the closest 
shared ancestors or two GO terms A and B. To find the 
best weighted values for these three relations, we 
implement several parameters and the results will be 
discussed in Section 4. Finally, the mean p value of all 
GO term pair combinations for two genes is used to the 
further semantic similarity measurement of these two 
genes. 

Moreover, some GO terms in the whole GO 
structure tend to be more informative than the others. 
These representative GO terms are commonly used to 
annotate differentially expressed genes between an 
object sample and a control sample in one microarray 
experiment. In other words, if we can find out these 
informative GO terms and give corresponding 
weighted values to them as we calculate the GO 
semantic similarity of gene pairs, the similarity 
measurement will be more accurate because these 
terms are found to significantly annotate a set of genes 
with similar reactions to the experiment. There is one 
method proposed to find these data-specific GO terms 
[18]. According to the authors, the steps to find these 
GO terms are as follows: 
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(I) Preparation of a pairwise comparison matrix 
for each GO term 

The algorithm starts by preparing a pairwise 
comparison matrix for each GO term. To identify 
whether one GO term significantly annotates certain of 
differentially expressed genes, a corresponding matrix 
for the comparison of expression values of genes 
annotated by this GO term is created. The X-axis and 
the Y-axis in the matrix are expression values of the 
genes annotated by the GO term at time slot I, II, 
III…etc. For example, if we are going to identify a GO 
term A and see if it is informative or not, we will first 
create a matrix belonging to GO term A with 
expression values at each time slot for the genes 
annotated by GO term A listed in the matrix. 

 
(II) Identification of differentially expressed 

genes between two microarray data 
After the comparison matrixes of each GO term are 

created, we are now going to fill in each cell in the 
matrixes. A table recording all genes annotated by the 
GO term and the ratio of their gene expression values 
at certain time slots is build as the content of each cell 
in the matrix. For example, the cell (I, II) in the matrix 
indicates that gene expression values of all genes 
annotated by the GO term at time slot 1 divided by 
gene expression values at time slot 2 is performed. 
After repeating this operation, all cells except the 
diagonal line in the matrix are processed with different 
ratios standing for how differentially the genes are 
expressed between the two time slots. Next, we need to 
define a threshold for ratios of gene expression values 
so that genes with ratios of expression value for two 
time slots larger than the threshold are taken as 
differentially expressed genes. Cells with more than 
one differentially expressed gene in them are then 
marked gray in the comparison matrix. To define the 
threshold for the ratio of gene expression values, a 
statistical method is used. The statistical testing 
method is based on the following equation: 
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where N is the number of genes examined by the 
microarray experiment that we refer to as “population 
gene set”, M is the number of genes annotated to the 
matrix-linked GO term in the population gene set, n is 
the number of differentially expressed genes between 
microarray data, and j is the number of genes assigned 
to the matrix-linked GO term in the differentially 
expressed genes. Figure 3 is an example of this 
operation. 

 

 
Figure 3.Example of each cell in the 
comparison matrix 

 
 (III) Identification of data-specific GO terms 
The last step in the method is to determine whether 

gray cells are concentrated in any rows compared to 
whole cells. The theorem is very intuitive that if one 
GO term annotates genes which are significantly 
differentially expressed, then this GO term tends to be 
more informative than the other terms. After 
comparison matrixes are built for all involved GO 
terms, we now need to determine how enriched the 
gray cells are in each matrix. Similar to previous step, 
it requires a statistical operation that cannot be 
explained in detail due to space limitation. Please refer 
to [18] if interested. 

 
Step 3: Definition of the similarity measurement 

of gene pairs. 
Our approach aims to provide an accurate similarity 

measurement that takes both gene expression values 
and external information for genes into account so that 
the similarity measurement can be combined with the 
KNN method to impute missing values. We modify the 
equation proposed in [18] according to our evaluation 
as follows: 

),(*),(),( _
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NEWGO
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where DGO_NEW is our estimation of p values of all 
GO term pairs used to annotate gx and gy,  is the 
positive weighted parameter, and DDTW is the DTW 
distance of (gx, gy). In equation (6), we replace 
Euclidean distance with DTW distance, and replace 
original p value estimation with our approach. This is 
because we consider that DTW is more suitable than 
Euclidean distance while calculating distance between 
gene expression values. Equally, we use our new 
estimation for semantic distance between gene pairs to 
retrieve higher accuracy. 
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Step 4: Combination of the similarity 

measurement with the KNN method. 
Our imputation approach is combined with the 

KNN method but with some modifications. Here we 
use our similarity measurement as the estimation to 
determine the closeness of gene pairs. The steps of our 
approach for missing value imputation are as follows: 
1. In order to impute the missing value GI,J for gene I 

at time slot J, the KNN-impute algorithm chooses k 
genes that are most similar to the gene I and with 
the values in position J not missing. 

2. The missing value is estimated as the weighted 
average of the corresponding entries in the selected 
k expression vectors:  

GI,J = iJ
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where iJe are expression values of the k 
selected genes in the similar gene set. 

3. The weighted value 
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and g* denotes the set of k genes closest to gi, 
Sim(g*, gi) is our similarity measurement as shown in 
equation (6). Missing values for the target gene are 
hence imputed with our approach. 

 
3. Dataset and assessment of imputation 
accuracy  

 
We use the microarray dataset obtained for genes of 

Yeast Saccharomyces cerevisiae cells with four 
synchronization methods: alpha-factor, cdc15, cdc28, 
and elutriation by Spellman et al [2]. Spellman’s 
dataset is widely used as the real dataset in microarray 
research. These four subsets of the dataset contain 
totally 6178 gene ORF profiles with their expression 
values across various amounts of time slots. In the 
dataset, the alpha sub-dataset contains 18 time points 
with seven minutes as the time interval, while the 
cdc28 sub-dataset contains 17 time points with ten 
minutes as the time interval. 

For the assessment of imputation accuracy, genes 
with missing values in microarray gene expression data 
are first filtered to generate a complete matrix. Missing 
values with different missing rates ranging from 1%, 
5%, 10%, 15% and 20% in the complete matrix are 
deleted at random to create testing datasets. We then 

calculate the Normalized Root Mean Square (NRMS) 
error. Equation for NRMS error is as follows: 

][])[( 2
knownknownpredict ystdyymean −

(10) 

where predicty and knowny  are estimated values 
and known values in the complete matrix respectively, 

and ][ knownystd is the standard deviation of known 
values. An imputation method is said to outperform 
others if the NRMS error of it is less than that of other 
imputation methods. 
 
4. Experimental results and discussion 
 

For our evaluation, we use only parameters that 
generate the best imputation results (the lowest NRMS 
values). We perform missing value imputation on 
alpha and cdc28 sub-datasets with our approach. We 
also implement existing methods such as the KNN 
method and BPCA for comparison. Experimental 
results are shown in Figure 4 and Figure 5 for alpha 
and cdc28 sub-datasets respectively. According to the 
results, our approach is the most effective method 
modified based on FastDTW with slope weighting and 
proper parameters for GO similarity measurement. 
Sequences of effectiveness of these imputation 
methods may change a little in certain percentage of 
missed data. This may result from the randomness 
while deciding which values to be removed in the 
complete matrix. To sum up, using our approach with 
suitable parameters can retrieve the best imputation 
results. He we only show the best imputation results of 
our approach with the most proper parameters due to 
space limitation. 
 
5. Conclusion 

 
In this paper, we present a novel approach for 

missing value imputation in microarray data. Our 
approach takes both expression values and GO 
semantic information for genes into account. 
Compared with other methods, our approach is more 
effective in terms of NRMS errors. We are now 
working on the survey of the influence of different 
parameters used in our approach on the imputation 
results. We hope to further improve our approach by 
adjusting proper parameters. 
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Figure 4.Imputation results for alpha sub-
dataset 
 
 

 
Figure 5.Imputation results for cdc28 sub-
dataset 
 
 
Acknowledgment 
This work was supported in part by National Science 
Council (NSC) with project number NSC 99-2221-E-
032-063. 
 
References 
 
[1] J. DeRisi, R. Iyer, and Brown P, “Exploring the metabolic 
and genetic control of gene expression on a genomic scale,” 
Science, vol.278, pp.680-686, 1997. 
[2] P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. 
Anders, M.B. Eisen, P.O. Brown, D. Botstein, and B. Futcher, 
“Comprehensive identification of cell cycle-regulated genes 
of the yeast saccharomyces cerevisiae by microarray 
hybridization,” Mol. Biol. Cell, vol.9, pp.3273-3297, 1998. 
[3] E. Acuna and C. Rodriguez, “The treatment of missing 
values and its effect in the classifier accuracy,” Classification, 
Clustering and Data Mining Applications, pp.639-648, 2004. 

[4] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. 
Hastie, R. Tibshirani, D. Botstein, and R.B. Altman, 
“Missing value estimation methods for DNA microarrays,” 
Bioinformatics, vol.17, pp.520-525, 2001. 
[5] A.C. Yang, H.H. Hsu, and M.D. Lu, “Outlier filtering for 
identification of gene regulations in microarray time-series 
data,” in: Proc. of the 3rd Intl. Conf. on Complex, Intelligent 
and Software Intensive Syst., pp.854-859, 2009. 
[6] V.S. Tseng, L.C. Chen, and J.J. Chen, “Gene relation 
discovery by mining similar subsequences in time-series 
microarray data,” in: Proc. of the IEEE Symposium on 
Computational Intelligence in Bioinformatics and 
Computational Biol., pp.106-112, 2007. 
[7] A. Mohammadi and M.H. Saraee, “Estimating missing 
value in microarray data using fuzzy clustering and gene 
ontology,” in: Proc. of the IEEE Intl. Conf. on Bioinformatics 
and Biomedicine, pp.382-385, 2008. 
[8] Q. Xiang and X. Dai, “Improving missing value 
imputation in microarray data by using gene regulatory 
information,” in: Proc. of the 2nd Intl. Conf. on 
Bioinformatics and Biomedical Eng., pp.326-329, 2008. 
[9] Y. Yamada, K.I. Hirotani, K. Satou, and K.I. 
Muramoto, ” An identification method of data-specific GO 
terms from a microarray data set,” IEICE Trans. on Inf. and 
Syst., vol.E92-D, pp.1093-1102, 2009. 
[10] S. Oba, M. Sato, I. Takemasa, M. Monden, K. 
Matsubara, and S. Ishii, “A Bayesian missing value 
estimation method for gene expression profile data,” 
Bioinformatics, vol.19, pp.2088-2096, 2003. 
[11] C. Furlanello, S. Merler, and G. Jurman, “Combining 
feature selection and DTW for time-varying functional 
genomics,” IEEE Trans. on Sig. Processing, vol.54, pp.2436-
2443, 2006. 
[12] H.M. Yu, W.H. Tsai, and H.M. Wang, “Query-by-
singing system for retrieving karaoke music,” IEEE Trans. 
on Multimedia, vol.10, pp.1626-1637, 2008. 
[13] H. Kim, G. H. Golub, and H. Park, “Missing value 
estimation for DNA microarray gene expression data: local 
least squares imputation,” Bioinformatics, vol.21, pp.187-198, 
2005. 
[14] S. Salvador and P. Chan, “Toward accurate dynamic 
time warping in linear time and space,” Intelligent Data 
Analysis, vol.11, pp.561-580, 2007. 
[15] J.B. Kruskall and M. Liberman, “The symmetric time 
warping algorithm: from continuous to discrete,” in: Time 
Warps, String Edits, and Macromolecules: The theory and 
Practice of String Comparison, 1983. 
[16] Gene ontology website, URL: 
http://www.geneontology.org/, last accessed on October 5th, 
2010. 
[17] J. Tuikkala, L. Elo, O.S. Nevalainen, and T. Aittokallio, 
“Improving missing value estimation in micorarray data with 
gene ontology,” Bioinformatics, Vol. 22, pp.566-572, 2006. 
[18] Y.Yamada, K. Hirotani, K. Satou, and K. Muramoto, 
“An identification method of data-specific GO terms from a 
microarray data Set,” IEICE Transactions on Information & 
Systems, Vol. E92-D, No.5, May 2009 

 

540


